
Adrian Prieto Follow

Lead Engineer at Futurism
Oct 11, 2016 · 3 min read

Stuck on a Coding Problem? Here are 5
Steps to Solve It

Solving problems is a programmer’s bread and butter. While everyone

has their own tricks to employ when they’re stuck, I’ve personally found

>ve sure>re steps that, more likely than not, will help you solve any

programming problems you encounter—and do it faster and more

e@ciently.

1. Read the problem several times until you

https://medium.com/@aprietof?source=post_header_lockup
https://medium.com/@aprietof?source=post_header_lockup


1. Read the problem several times until you
can explain it to someone else

This is by far, the most important step. Read the problem several times

until you fully understand it. If you don’t understand it, you simply won’t

be able to solve it. And the best way to know if you understand the

problem is by being able to explain it to someone else.

2. Solve the problem manually
Nothing can be automated that cannot be done manually!

Any code we write has a foundation: the manual process. So before you

start automating, before you start writing code like a maniac, solve your

problem manually 7rst. That way, you’ll know exactly what you want to

automate as you move forward. This will save you a lot of time.

Test your process with more than one input and some corner cases to

validate it; pay close attention to every single step you take in your head

and write them down—each step counts.

3. Make your manual solution better

Read Read Read!



3. Make your manual solution better
Now, see if you can make your process better, if there is an easier way to

do it, or if there are some steps you can cut to simplify it (like loops).

This step is very important—remember that it’s much easier to

reconstruct your process in your head than it is in your code.

At this point, you will be tempted to write some code. Don’t do it yet! We

have one more step to cover, and I promise you it will make your >nal

code easier to write.

4. Write pseudocode
“Pseudocode” is a detailed description of what a program must do; and

writing it out will help you write every line of code needed in order to

solve your problem.

Experienced programmers sometimes omit this step, but I can assure

you: no matter how experienced you are, if you write some pseudocode,

the process of writing your >nal code will be much easier since you only

have to translate each line of pseudo code into actual code.

Here’s what that might look like for “square (n)”:

Now that we know exactly what our code is supposed to do, we have one

more step… can you guess what it is?

5. Replace pseudocode with real code
Here’s the fun part. Now that you know for sure what your program

should do, just write some code and test it. Remember, you can always

make your code better along the way.

Let’s take a look at how we’d do this with our square example:



Then, we can further optimize it:

Following this >ve-step process has helped me out of so many

programming binds. No matter how complex your problem is, I assure

you, these steps will help you solve it in less time and with fewer

headaches.

Note: If your problem is too complex, divide it into small problems; it’s a

technique called “Divide and conquer”.

. . .

Interested in learning how to code? I’m learning at Flatiron School, a coding

bootcamp with campuses online and in NYC.

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
http://hubs.ly/H048qNm0

